OKLAHOMA STATE UNIVERSITY
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN/MAE 5713 Linear Systems
Spring 2012
Final Exam

Choose any four out of five problems.
Please specify which four listed below to be graded:

; \qquad
\qquad
\qquad

Name: \qquad

Problem 1:

Find a minimal observable canonical form realization (i.e., its simulation diagram and state space representation) for the following MISO system described by

$$
H(s)=\left[\begin{array}{cc}
\frac{2 s+3}{s^{3}+4 s^{2}+5 s+2} & \frac{s^{2}+2 s+2}{s^{4}+3 s^{3}+3 s^{2}+s}
\end{array}\right] .
$$

Problem 2:

Let

$$
S=\left\{x \in \mathfrak{R}^{3} \left\lvert\, x=\alpha\left[\begin{array}{l}
0.6 \\
1.2 \\
0.0
\end{array}\right]+\beta\left[\begin{array}{l}
0.5 \\
1.0 \\
0.0
\end{array}\right]\right., \alpha, \beta \in \mathfrak{R}\right\},
$$

find the orthogonal complement space of $S, S^{\perp}\left(\subset \mathfrak{R}^{3}\right)$, and determine an orthonormal basis and dimension for S^{\perp}. For $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}\left(\in \mathfrak{R}^{3}\right)$, find its direct sum representation (i.e., x_{1} and x_{2}) of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in S, x_{2} \in S^{\perp}$.

Problem 3:

Given is the system of first-order ordinary differential equation $\dot{x}=t^{2} A x$, where $A \in \mathfrak{R}^{n \times n}$ and $t \in \mathfrak{R}$. Determine the state transition matrix $\Phi\left(t, t_{0}\right)$ and its solution, $x(t)$.

Problem 4:

Prove that $B(t)=\Phi\left(t, t_{0}\right) B_{0} \Phi^{*}\left(t, t_{0}\right)$ is the solution of

$$
\frac{d}{d t} B(t)=A(t) B(t)+B(t) A^{*}(t), \quad \text { with initial condition } B\left(t_{0}\right)=B_{0}
$$

where $\Phi\left(t, t_{0}\right)$ is the state-transition matrix of $\dot{x}(t)=A(t) x(t)$ and $\Phi^{*}\left(t, t_{0}\right)$ is the complex conjugate of $\Phi\left(t, t_{0}\right)$.

Problem 5:

Consider

$$
\begin{aligned}
& \dot{x}=A(t) x+B(t) u \\
& y=C(t) x
\end{aligned}
$$

and its adjoint system

$$
\begin{aligned}
& \dot{z}=-A^{T}(t) z+C^{T}(t) v . \\
& w=B^{T}(t) z
\end{aligned}
$$

Let $G(t, \tau)=G_{a}^{T}(\tau, t)$ be their impulse response matrices. Show that $G(t, \tau)=G_{a}^{T}(\tau, t)$.

